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Abstract «+ We present numerical data on normalized cutoff
wavelength versus cone half-angle for the first three higher-
order TE,,, modes, as well as four other modes of interest, in
conical coaxial transmission lines (the “co-conmical” line).
These are given as a function of the ratio of outer-to-inner
cone half-angles (proportional to line impedance) for outer
cone half-angles of 10 and 22.5 degrees. Results were
compared to those for the coaxial tramsmission line of
cylindrical geometry and found to be qualitatively similar.

I. INTRODUCTION

The microwave applications for coaxial transmission lines
of conical geometry have been somewhat limited. Currently,
there is interest in using such lines (what we have termed a
“co-conical line”) for accurately calibrating broadband
power-density and E-field probes at high incident field
levels [1]. A prototype version of a one-meter long co-
conical system, being developed at NIST, is illustrated in
Fig. 1. Because we needed to determine the usable TEM-
mode bandwidth of this structure and because such data
appeared to be unavailable in the literature, we sought to
generate these data ourselves.

The theory for waves guided within conical structures was
first developed more than sixty years ago by Schelkunoff
[2,3]. Both Schelkunoff and Marcuvitz [4] discuss the co-
conical line (Marcuvitz termed it a “Conical Waveguide”).
Neither Schelkunoff or Marcuvitz attempted to derive any
numerical data on modal cutoff in such structures, because
very little tabulated data on Legendre functions of fractional
order were then available.

In order to check the accuracy of the root-finding routines
used in our mathematical software, we also derived modal
cutoff data for higher-order modes in the coaxial (cylindrical)
transmission line. We also wanted to qualitatively compare

our results for the co-conical line
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Fig. 1. [Ilustrated Diagram of the NIST Prototype Co-Conical
Field Generation System.

with those for the cylindrical coaxial line. Although the latter
problem has been considered by many workers [2]-[6] over
the past sixty years, we were surprised to find that serious
data limitations exist in the available literature on this
problem, which significantly affect the usability of these
data. Therefore, we have also included a comprehensive and
much simpler data plot.

II. THEORY

Only the transcendental equations of Schelkunoff’s
theory [2,3], which define modal cutoff in coaxial conical and
cylindrical lines, will be repeated here. For a TM spherical
wave propagating in the region between two coaxial conical
conductors with inner and outer half-angles *, and -,
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respectively, modal cut-off is defined by the following
relationship:
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where P(cos*) and Q/(cos*) respectively represent
associated Legendre functions, of the first and second kind,
with order x and degree y. A similar relationship defines
modal cutoff for all TE modes:
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In the above equations, y is an integer m, and X, ,, and

X*, . respectively represent the nth eigenfunction root
(where n is a nonzero integer) of x, degree m, that satisfies
equations (1) and (2). It is straightforward to show that the
normalized (dimensionless) cutoff wavelength for higher-
order modes in the co~conical line is given by
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for TM modes and

[‘ c]TEm,,/ re 2 [x In,m(x ’n,m ¢ 1)]' 12 (4)
for TE modes.

Similarly, for a TM plane wave propagating in the region
between two coaxial cylindrical conductors with inner and
outer radii a, and a, respectively, modal cut-off is defined by
the following relationship:

Jm [aZ.n,m] .
Nm [02' n,m]

Jm [al.n.m] 5
Nm [al.n,m] ’ ( )

where J, [a*, ] and N, [a*, ] respectively represent Bessel

and Neumann functions of order y. A similar expression is
derived for the TE modes:
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In the above equations, ®,, and *’

nm

respectively
represent the nth nonzero root, integer order m, that satisfies
equations (5) and (6). For the cylindrical geometry, the
normalized wavelength is given by :

(. C)TM /(12 © 2 /) nm (7)
for TM modes and
(0 c)TEm”/a2 o Do /. on,m (8)
for the TE modes.
III. RESULTS

Derivation of the numerical roots of equations (1), (2), (5),
and (6) was performed using a commercially available
mathematical software package. We found that this search
routine generally worked well, provided that the root search
was confined to a narrow range that needed to be specified
in advance. Fig. 2 shows data on *_/r versus the ratio of
outer-to-inner cone half-angles * , /+ , in the co-conical line
for the first three higher-order TE,, modes, as well as the
T™,;, T™,,, TE,,, and TM;, modes. The values chosen for
* J/* ;above 1.1 correspond to transmission-line impedances
Z, 0f 10, 25, 50, 75, 100, and 125 » . The relation between * ,
/+ ; and Z, is given in [2,3]. Fig. 2a gives results for an outer
cone angle of * , = 10°, while Fig. 2b shows data for * , =
22.5°.

Similarly, Fig. 3 shows data on ¢ ,/a, versus the ratio of
outer-to-inner radii a, /a, in the coaxial cylindrical line for
exactly the same set of higher-order modes as given in Fig.
2 and the same values of Z,.The relation between a, /a, and
Z, is also given in [2,3]. We compared these data with
available literature values, including the tabulated data of
Marcuvitz [4] and graphical plots of Ramo, Whinnery and
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Van Duzer [5] and Harvey [6] for a number of test cases
involving low-order TM and TE modes with values of a, /a,
= 1.2, 2.3, and 3.5. This was not a straight-forward process
owing to the manner in which cutoff data are currently
presented in the literature. Marcuvitz lists values of *, , and
* v, for varying values of aa, in three separate tables,
depending on the mode series being considered. Additional
computations are then needed in order to derive values of
* Ja, In [5,6], cutoff data are given in terms of an ordinate
parameter that is some function of * /a,,, and plotted against
either a,/a, or a,/a,. This meant that corrections had to be
applied to these data, before comparisons could be
undertaken. Following these various corrections, our data
were found to agree closely with Marcuvitz’s data [4] and
the plotted data [5,6]. We therefore concluded that our root-
finding software has given us valid data.

TV. DISCUSSION

We see that the cutoff data shown in Figs. 2 and 3 are
qualitatively, but not quantitatively, quite similar and that
the order in which the higher-order modes appear is the
same. Note that for both geometries, the normalized cutoff
wavelength for the TE , modes approaches a finite
asymptotic value as ¢, /», and a, /a, approach unity.
However, these cases have no physical meaning, despite

the apparent availability of a mathematical solution.

The available data on cutoff in coaxial cylindrical lines have
not been well presented in the literature. We believe that Fig.
3 presents these data over a wider range of a, /a, and for
more modes, in a manner that is much simpler and easier to
interpret, and therefore more useable to designers.

REFERENCES

[1] D.R.Novotny, R.T. Johnk, A. Ondrejka: “Improved wideband
Antenna Test Cell: the Co-Conical Field Generation System.”
Proceedings of AMTA Conference, pp. 144-149, Monterey,
CA, 4-8 Oct. 1999

[2] S.A. Schelkunoff: “Transmission Theory of Spherical Waves,”
AIEE Transactions, Vol. 38, pp. 744-750, 1938.

[31 A. Schelkunoff: Electromagnetic Waves, D. Van Nostrand Co.,
Inc: Princeton, NJ, 1943,

[4] N. Marcuvitz (ed): “Waveguide Handbook ”, Radiation
Laboratory Series, Vol. 10, McGraw-Hill Co., Inc.: New York,
NY, 1951.

[5] S. Ramo, JR. Whinnery, and T. Van Duzer: “Fields and
Waves in_Communication Electronics”, 2™, Edition, John
Wiley & Sons, Inc.: New York, NY, 1984,

[6] A.F Harvey: “Microwave Engineering”, Academic Press, Inc.,
London and New York, 1963.

1.2

0.8 |

04 [

0.2 |

y
v

pdta A Lo

6,/8,

Fig. 2a. Normalized cutoff wavelength * /r versus the ratio of outer-to-inner cone half-angles » ,/» , for the first three higher-
order TE,_, modes in the co-conical line, as well as other modes of interest; « , = 10°.
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Fig. 2b. Normalized cutoff wavelength « /r versus the ratio of outer-to-inner cone half-angles * ,/» ; for the first three higher-
order TE_, modes in the co-conical line, as well as other modes of interest; ¢ , = 22.5°.
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Fig. 3. Normalized cutoff wavelength * /a, versus the ratio of outer-to-inner radii a, /a, for the first three higher-order TE,
modes in the coaxial transmission line, as well as various other modes of interest.
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